Enter a problem...
Linear Algebra Examples
[1-30-23-12-2-6-21025-1613]⎡⎢
⎢
⎢
⎢⎣1−30−23−12−2−6−21025−1613⎤⎥
⎥
⎥
⎥⎦
Step 1
Step 1.1
Choose the row or column with the most 00 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-12-2-61025613|
Step 1.1.4
Multiply element a11 by its cofactor.
1|-12-2-61025613|
Step 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-2-6-225-113|
Step 1.1.6
Multiply element a12 by its cofactor.
3|3-2-6-225-113|
Step 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-12-6-2105-163|
Step 1.1.8
Multiply element a13 by its cofactor.
0|3-12-6-2105-163|
Step 1.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|3-12-2-2102-161|
Step 1.1.10
Multiply element a14 by its cofactor.
2|3-12-2-2102-161|
Step 1.1.11
Add the terms together.
1|-12-2-61025613|+3|3-2-6-225-113|+0|3-12-6-2105-163|+2|3-12-2-2102-161|
1|-12-2-61025613|+3|3-2-6-225-113|+0|3-12-6-2105-163|+2|3-12-2-2102-161|
Step 1.2
Multiply 0 by |3-12-6-2105-163|.
1|-12-2-61025613|+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3
Evaluate |-12-2-61025613|.
Step 1.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.3.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2513|
Step 1.3.1.4
Multiply element a11 by its cofactor.
-12|2513|
Step 1.3.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|10563|
Step 1.3.1.6
Multiply element a12 by its cofactor.
2|10563|
Step 1.3.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|10261|
Step 1.3.1.8
Multiply element a13 by its cofactor.
-6|10261|
Step 1.3.1.9
Add the terms together.
1(-12|2513|+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12|2513|+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.2
Evaluate |2513|.
Step 1.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(-12(2⋅3-1⋅5)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.2.2
Simplify the determinant.
Step 1.3.2.2.1
Simplify each term.
Step 1.3.2.2.1.1
Multiply 2 by 3.
1(-12(6-1⋅5)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.2.2.1.2
Multiply -1 by 5.
1(-12(6-5)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12(6-5)+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.2.2.2
Subtract 5 from 6.
1(-12⋅1+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2|10563|-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.3
Evaluate |10563|.
Step 1.3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(-12⋅1+2(10⋅3-6⋅5)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.3.2
Simplify the determinant.
Step 1.3.3.2.1
Simplify each term.
Step 1.3.3.2.1.1
Multiply 10 by 3.
1(-12⋅1+2(30-6⋅5)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.3.2.1.2
Multiply -6 by 5.
1(-12⋅1+2(30-30)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2(30-30)-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.3.2.2
Subtract 30 from 30.
1(-12⋅1+2⋅0-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2⋅0-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2⋅0-6|10261|)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.4
Evaluate |10261|.
Step 1.3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(-12⋅1+2⋅0-6(10⋅1-6⋅2))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.4.2
Simplify the determinant.
Step 1.3.4.2.1
Simplify each term.
Step 1.3.4.2.1.1
Multiply 10 by 1.
1(-12⋅1+2⋅0-6(10-6⋅2))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.4.2.1.2
Multiply -6 by 2.
1(-12⋅1+2⋅0-6(10-12))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2⋅0-6(10-12))+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.4.2.2
Subtract 12 from 10.
1(-12⋅1+2⋅0-6⋅-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2⋅0-6⋅-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12⋅1+2⋅0-6⋅-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.5
Simplify the determinant.
Step 1.3.5.1
Simplify each term.
Step 1.3.5.1.1
Multiply -12 by 1.
1(-12+2⋅0-6⋅-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.5.1.2
Multiply 2 by 0.
1(-12+0-6⋅-2)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.5.1.3
Multiply -6 by -2.
1(-12+0+12)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1(-12+0+12)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.5.2
Add -12 and 0.
1(-12+12)+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.3.5.3
Add -12 and 12.
1⋅0+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1⋅0+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
1⋅0+3|3-2-6-225-113|+0+2|3-12-2-2102-161|
Step 1.4
Evaluate |3-2-6-225-113|.
Step 1.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2513|
Step 1.4.1.4
Multiply element a11 by its cofactor.
3|2513|
Step 1.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-25-13|
Step 1.4.1.6
Multiply element a12 by its cofactor.
2|-25-13|
Step 1.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-22-11|
Step 1.4.1.8
Multiply element a13 by its cofactor.
-6|-22-11|
Step 1.4.1.9
Add the terms together.
1⋅0+3(3|2513|+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3|2513|+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.2
Evaluate |2513|.
Step 1.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅0+3(3(2⋅3-1⋅5)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.2.2
Simplify the determinant.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Multiply 2 by 3.
1⋅0+3(3(6-1⋅5)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.2.2.1.2
Multiply -1 by 5.
1⋅0+3(3(6-5)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3(6-5)+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.2.2.2
Subtract 5 from 6.
1⋅0+3(3⋅1+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2|-25-13|-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.3
Evaluate |-25-13|.
Step 1.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅0+3(3⋅1+2(-2⋅3-(-1⋅5))-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.3.2
Simplify the determinant.
Step 1.4.3.2.1
Simplify each term.
Step 1.4.3.2.1.1
Multiply -2 by 3.
1⋅0+3(3⋅1+2(-6-(-1⋅5))-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.3.2.1.2
Multiply -(-1⋅5).
Step 1.4.3.2.1.2.1
Multiply -1 by 5.
1⋅0+3(3⋅1+2(-6--5)-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.3.2.1.2.2
Multiply -1 by -5.
1⋅0+3(3⋅1+2(-6+5)-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2(-6+5)-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2(-6+5)-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.3.2.2
Add -6 and 5.
1⋅0+3(3⋅1+2⋅-1-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2⋅-1-6|-22-11|)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2⋅-1-6|-22-11|)+0+2|3-12-2-2102-161|
Step 1.4.4
Evaluate |-22-11|.
Step 1.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅0+3(3⋅1+2⋅-1-6(-2⋅1-(-1⋅2)))+0+2|3-12-2-2102-161|
Step 1.4.4.2
Simplify the determinant.
Step 1.4.4.2.1
Simplify each term.
Step 1.4.4.2.1.1
Multiply -2 by 1.
1⋅0+3(3⋅1+2⋅-1-6(-2-(-1⋅2)))+0+2|3-12-2-2102-161|
Step 1.4.4.2.1.2
Multiply -(-1⋅2).
Step 1.4.4.2.1.2.1
Multiply -1 by 2.
1⋅0+3(3⋅1+2⋅-1-6(-2--2))+0+2|3-12-2-2102-161|
Step 1.4.4.2.1.2.2
Multiply -1 by -2.
1⋅0+3(3⋅1+2⋅-1-6(-2+2))+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2⋅-1-6(-2+2))+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2⋅-1-6(-2+2))+0+2|3-12-2-2102-161|
Step 1.4.4.2.2
Add -2 and 2.
1⋅0+3(3⋅1+2⋅-1-6⋅0)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2⋅-1-6⋅0)+0+2|3-12-2-2102-161|
1⋅0+3(3⋅1+2⋅-1-6⋅0)+0+2|3-12-2-2102-161|
Step 1.4.5
Simplify the determinant.
Step 1.4.5.1
Simplify each term.
Step 1.4.5.1.1
Multiply 3 by 1.
1⋅0+3(3+2⋅-1-6⋅0)+0+2|3-12-2-2102-161|
Step 1.4.5.1.2
Multiply 2 by -1.
1⋅0+3(3-2-6⋅0)+0+2|3-12-2-2102-161|
Step 1.4.5.1.3
Multiply -6 by 0.
1⋅0+3(3-2+0)+0+2|3-12-2-2102-161|
1⋅0+3(3-2+0)+0+2|3-12-2-2102-161|
Step 1.4.5.2
Subtract 2 from 3.
1⋅0+3(1+0)+0+2|3-12-2-2102-161|
Step 1.4.5.3
Add 1 and 0.
1⋅0+3⋅1+0+2|3-12-2-2102-161|
1⋅0+3⋅1+0+2|3-12-2-2102-161|
1⋅0+3⋅1+0+2|3-12-2-2102-161|
Step 1.5
Evaluate |3-12-2-2102-161|.
Step 1.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|10261|
Step 1.5.1.4
Multiply element a11 by its cofactor.
3|10261|
Step 1.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-22-11|
Step 1.5.1.6
Multiply element a12 by its cofactor.
12|-22-11|
Step 1.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-210-16|
Step 1.5.1.8
Multiply element a13 by its cofactor.
-2|-210-16|
Step 1.5.1.9
Add the terms together.
1⋅0+3⋅1+0+2(3|10261|+12|-22-11|-2|-210-16|)
1⋅0+3⋅1+0+2(3|10261|+12|-22-11|-2|-210-16|)
Step 1.5.2
Evaluate |10261|.
Step 1.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅0+3⋅1+0+2(3(10⋅1-6⋅2)+12|-22-11|-2|-210-16|)
Step 1.5.2.2
Simplify the determinant.
Step 1.5.2.2.1
Simplify each term.
Step 1.5.2.2.1.1
Multiply 10 by 1.
1⋅0+3⋅1+0+2(3(10-6⋅2)+12|-22-11|-2|-210-16|)
Step 1.5.2.2.1.2
Multiply -6 by 2.
1⋅0+3⋅1+0+2(3(10-12)+12|-22-11|-2|-210-16|)
1⋅0+3⋅1+0+2(3(10-12)+12|-22-11|-2|-210-16|)
Step 1.5.2.2.2
Subtract 12 from 10.
1⋅0+3⋅1+0+2(3⋅-2+12|-22-11|-2|-210-16|)
1⋅0+3⋅1+0+2(3⋅-2+12|-22-11|-2|-210-16|)
1⋅0+3⋅1+0+2(3⋅-2+12|-22-11|-2|-210-16|)
Step 1.5.3
Evaluate |-22-11|.
Step 1.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅0+3⋅1+0+2(3⋅-2+12(-2⋅1-(-1⋅2))-2|-210-16|)
Step 1.5.3.2
Simplify the determinant.
Step 1.5.3.2.1
Simplify each term.
Step 1.5.3.2.1.1
Multiply -2 by 1.
1⋅0+3⋅1+0+2(3⋅-2+12(-2-(-1⋅2))-2|-210-16|)
Step 1.5.3.2.1.2
Multiply -(-1⋅2).
Step 1.5.3.2.1.2.1
Multiply -1 by 2.
1⋅0+3⋅1+0+2(3⋅-2+12(-2--2)-2|-210-16|)
Step 1.5.3.2.1.2.2
Multiply -1 by -2.
1⋅0+3⋅1+0+2(3⋅-2+12(-2+2)-2|-210-16|)
1⋅0+3⋅1+0+2(3⋅-2+12(-2+2)-2|-210-16|)
1⋅0+3⋅1+0+2(3⋅-2+12(-2+2)-2|-210-16|)
Step 1.5.3.2.2
Add -2 and 2.
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2|-210-16|)
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2|-210-16|)
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2|-210-16|)
Step 1.5.4
Evaluate |-210-16|.
Step 1.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2(-2⋅6-(-1⋅10)))
Step 1.5.4.2
Simplify the determinant.
Step 1.5.4.2.1
Simplify each term.
Step 1.5.4.2.1.1
Multiply -2 by 6.
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2(-12-(-1⋅10)))
Step 1.5.4.2.1.2
Multiply -(-1⋅10).
Step 1.5.4.2.1.2.1
Multiply -1 by 10.
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2(-12--10))
Step 1.5.4.2.1.2.2
Multiply -1 by -10.
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2(-12+10))
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2(-12+10))
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2(-12+10))
Step 1.5.4.2.2
Add -12 and 10.
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2⋅-2)
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2⋅-2)
1⋅0+3⋅1+0+2(3⋅-2+12⋅0-2⋅-2)
Step 1.5.5
Simplify the determinant.
Step 1.5.5.1
Simplify each term.
Step 1.5.5.1.1
Multiply 3 by -2.
1⋅0+3⋅1+0+2(-6+12⋅0-2⋅-2)
Step 1.5.5.1.2
Multiply 12 by 0.
1⋅0+3⋅1+0+2(-6+0-2⋅-2)
Step 1.5.5.1.3
Multiply -2 by -2.
1⋅0+3⋅1+0+2(-6+0+4)
1⋅0+3⋅1+0+2(-6+0+4)
Step 1.5.5.2
Add -6 and 0.
1⋅0+3⋅1+0+2(-6+4)
Step 1.5.5.3
Add -6 and 4.
1⋅0+3⋅1+0+2⋅-2
1⋅0+3⋅1+0+2⋅-2
1⋅0+3⋅1+0+2⋅-2
Step 1.6
Simplify the determinant.
Step 1.6.1
Simplify each term.
Step 1.6.1.1
Multiply 0 by 1.
0+3⋅1+0+2⋅-2
Step 1.6.1.2
Multiply 3 by 1.
0+3+0+2⋅-2
Step 1.6.1.3
Multiply 2 by -2.
0+3+0-4
0+3+0-4
Step 1.6.2
Add 0 and 3.
3+0-4
Step 1.6.3
Add 3 and 0.
3-4
Step 1.6.4
Subtract 4 from 3.
-1
-1
-1
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 4×8 matrix where the left half is the original matrix and the right half is its identity matrix.
[1-30-210003-12-2-60100-210250010-16130001]
Step 4
Step 4.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Step 4.1.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1-30-210003-3⋅1-12-3⋅-3-2-3⋅0-6-3⋅-20-3⋅11-3⋅00-3⋅00-3⋅0-210250010-16130001]
Step 4.1.2
Simplify R2.
[1-30-210000-3-20-3100-210250010-16130001]
[1-30-210000-3-20-3100-210250010-16130001]
Step 4.2
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
Step 4.2.1
Perform the row operation R3=R3+2R1 to make the entry at 3,1 a 0.
[1-30-210000-3-20-3100-2+2⋅110+2⋅-32+2⋅05+2⋅-20+2⋅10+2⋅01+2⋅00+2⋅0-16130001]
Step 4.2.2
Simplify R3.
[1-30-210000-3-20-310004212010-16130001]
[1-30-210000-3-20-310004212010-16130001]
Step 4.3
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
Step 4.3.1
Perform the row operation R4=R4+R1 to make the entry at 4,1 a 0.
[1-30-210000-3-20-310004212010-1+1⋅16-31+03-20+1⋅10+00+01+0]
Step 4.3.2
Simplify R4.
[1-30-210000-3-20-31000421201003111001]
[1-30-210000-3-20-31000421201003111001]
Step 4.4
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
Step 4.4.1
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
[1-30-21000-13⋅0-13⋅-3-13⋅-2-13⋅0-13⋅-3-13⋅1-13⋅0-13⋅00421201003111001]
Step 4.4.2
Simplify R2.
[1-30-21000012301-13000421201003111001]
[1-30-21000012301-13000421201003111001]
Step 4.5
Perform the row operation R3=R3-4R2 to make the entry at 3,2 a 0.
Step 4.5.1
Perform the row operation R3=R3-4R2 to make the entry at 3,2 a 0.
[1-30-21000012301-13000-4⋅04-4⋅12-4(23)1-4⋅02-4⋅10-4(-13)1-4⋅00-4⋅003111001]
Step 4.5.2
Simplify R3.
[1-30-21000012301-130000-231-2431003111001]
[1-30-21000012301-130000-231-2431003111001]
Step 4.6
Perform the row operation R4=R4-3R2 to make the entry at 4,2 a 0.
Step 4.6.1
Perform the row operation R4=R4-3R2 to make the entry at 4,2 a 0.
[1-30-21000012301-130000-231-243100-3⋅03-3⋅11-3(23)1-3⋅01-3⋅10-3(-13)0-3⋅01-3⋅0]
Step 4.6.2
Simplify R4.
[1-30-21000012301-130000-231-2431000-11-2101]
[1-30-21000012301-130000-231-2431000-11-2101]
Step 4.7
Multiply each element of R3 by -32 to make the entry at 3,3 a 1.
Step 4.7.1
Multiply each element of R3 by -32 to make the entry at 3,3 a 1.
[1-30-21000012301-1300-32⋅0-32⋅0-32(-23)-32⋅1-32⋅-2-32⋅43-32⋅1-32⋅000-11-2101]
Step 4.7.2
Simplify R3.
[1-30-21000012301-1300001-323-2-32000-11-2101]
[1-30-21000012301-1300001-323-2-32000-11-2101]
Step 4.8
Perform the row operation R4=R4+R3 to make the entry at 4,3 a 0.
Step 4.8.1
Perform the row operation R4=R4+R3 to make the entry at 4,3 a 0.
[1-30-21000012301-1300001-323-2-3200+00+0-1+1⋅11-32-2+1⋅31-20-321+0]
Step 4.8.2
Simplify R4.
[1-30-21000012301-1300001-323-2-320000-121-1-321]
[1-30-21000012301-1300001-323-2-320000-121-1-321]
Step 4.9
Multiply each element of R4 by -2 to make the entry at 4,4 a 1.
Step 4.9.1
Multiply each element of R4 by -2 to make the entry at 4,4 a 1.
[1-30-21000012301-1300001-323-2-320-2⋅0-2⋅0-2⋅0-2(-12)-2⋅1-2⋅-1-2(-32)-2⋅1]
Step 4.9.2
Simplify R4.
[1-30-21000012301-1300001-323-2-3200001-223-2]
[1-30-21000012301-1300001-323-2-3200001-223-2]
Step 4.10
Perform the row operation R3=R3+32R4 to make the entry at 3,4 a 0.
Step 4.10.1
Perform the row operation R3=R3+32R4 to make the entry at 3,4 a 0.
[1-30-21000012301-13000+32⋅00+32⋅01+32⋅0-32+32⋅13+32⋅-2-2+32⋅2-32+32⋅30+32⋅-20001-223-2]
Step 4.10.2
Simplify R3.
[1-30-21000012301-13000010013-30001-223-2]
[1-30-21000012301-13000010013-30001-223-2]
Step 4.11
Perform the row operation R1=R1+2R4 to make the entry at 1,4 a 0.
Step 4.11.1
Perform the row operation R1=R1+2R4 to make the entry at 1,4 a 0.
[1+2⋅0-3+2⋅00+2⋅0-2+2⋅11+2⋅-20+2⋅20+2⋅30+2⋅-2012301-13000010013-30001-223-2]
Step 4.11.2
Simplify R1.
[1-300-346-4012301-13000010013-30001-223-2]
[1-300-346-4012301-13000010013-30001-223-2]
Step 4.12
Perform the row operation R2=R2-23R3 to make the entry at 2,3 a 0.
Step 4.12.1
Perform the row operation R2=R2-23R3 to make the entry at 2,3 a 0.
[1-300-346-40-23⋅01-23⋅023-23⋅10-23⋅01-23⋅0-13-23⋅10-23⋅30-23⋅-30010013-30001-223-2]
Step 4.12.2
Simplify R2.
[1-300-346-401001-1-220010013-30001-223-2]
[1-300-346-401001-1-220010013-30001-223-2]
Step 4.13
Perform the row operation R1=R1+3R2 to make the entry at 1,2 a 0.
Step 4.13.1
Perform the row operation R1=R1+3R2 to make the entry at 1,2 a 0.
[1+3⋅0-3+3⋅10+3⋅00+3⋅0-3+3⋅14+3⋅-16+3⋅-2-4+3⋅201001-1-220010013-30001-223-2]
Step 4.13.2
Simplify R1.
[1000010201001-1-220010013-30001-223-2]
[1000010201001-1-220010013-30001-223-2]
[1000010201001-1-220010013-30001-223-2]
Step 5
The right half of the reduced row echelon form is the inverse.
[01021-1-22013-3-223-2]